RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information

- **Analyst**: AL
- **Agency or Company**: AIM ENGINEERING
- **Date Performed**: 3/8/2012
- **Analysis Time Period**: PM

Site Information

- **Freeway/Dir of Travel**: I-75 NB
- **Jurisdiction**: GGP NB OFF RAMP
- **Analysis Year**: 2039 EVERGLADES

Inputs

- **Upstream Adj Ramp**: Yes
- **Number of Lanes, N**: 3
- **Acceleration Lane Length, \(L_A\)**: ft
- **Deceleration Lane Length, \(L_D\)**: 310 ft
- **Freeway Volume, \(V_F\)**: 4470 veh/h
- **Ramp Volume, \(V_R\)**: 781 veh/h
- **Freeway Free-Flow Speed, \(S_{FF}\)**: 70.0 veh/h
- **Ramp Free-Flow Speed, \(S_{FR}\)**: 45.0 veh/h

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>(pc/h)</th>
<th>(V)</th>
<th>PHF</th>
<th>Terrain</th>
<th>%Truck</th>
<th>%Rv</th>
<th>(f_{HV})</th>
<th>(f_p)</th>
<th>(v = V/PHF \times f_{HV} \times f_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>4470</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>4846</td>
</tr>
<tr>
<td>Ramp</td>
<td>781</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>847</td>
</tr>
</tbody>
</table>

Estimation of \(v_{eq}\)

\[
L_{EQ} = \frac{V_3}{V_3 + V_{av4}} \times (Equation 13-6 or 13-7)
\]

\[
P_{FM} = \text{using Equation (Exhibit 13-6)}
\]

\[
V_{eq} = \frac{V_3}{V_3 + V_{av4}} \times (Equation 13-14 or 13-17)
\]

\[
V_{eq} = 2700 \text{pc/h} \quad \text{if } V_3 + V_{av4} > 2700 \text{pc/h} \quad \text{No}
\]

\[
V_{eq} = 1.5 \times V_{eq}^2 \text{pc/h} \quad \text{if } V_3 + V_{av4} > 1.5 \times V_{12}^2 \quad \text{No}
\]

Estimation of \(v_{12}\)

\[
V_{12} = V_F + (V_F - V_R) \times P_{FD}
\]

\[
L_{EQ} = \frac{V_3}{V_3 + V_{av4}} \times (Equation 13-12 or 13-13)
\]

\[
P_{FD} = 0.600 \text{ using Equation (Exhibit 13-7)}
\]

\[
V_{12} = 3246 \text{ pc/h}
\]

Capacity Checks

<table>
<thead>
<tr>
<th>Actual</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{FO})</td>
<td>Exhibit 13-6</td>
</tr>
</tbody>
</table>

Flow Entering Merge Influence Area

- **Actual**: 3246 pc/h
- **Desirable**: Exhibit 13-8
- **Violation**: 2100 pc/h

Level of Service Determination (if not F)

\[
D_R = 5.475 + 0.00734 \times V_R + 0.0078 \times V_{12} - 0.00627 \times L_A
\]

\[
D_R = 23.4 \text{ (pc/mi/ln)}
\]

\[
LOS = \text{D (Exhibit 13-2)}
\]
RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information
- **Analyst**: AL
- **Agency or Company**: AIM ENGINEERING
- **Date Performed**: 3/16/2012
- **Analysis Time Period**: PM

Site Information
- **Freeway/Dir of Travel**: I-75 NB
- **Junction**: GOLDEN GATE PKWY NB
- **Jurisdiction**: ON
- **Analysis Year**: 2039 EVERGLADES

Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Acceleration Lane Length, L_A</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Deceleration Lane Length L_D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeway Volume, V_F</td>
<td>3689</td>
<td></td>
</tr>
<tr>
<td>Ramp Volume, V_R</td>
<td>2199</td>
<td></td>
</tr>
<tr>
<td>Ramp Free-Flow Speed, S_RF</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>Freeway Free-Flow Speed, S_FF</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Downstream Adj Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>(pc/h)</th>
<th>V (Veh/hr)</th>
<th>PHF</th>
<th>Terrain</th>
<th>%Truck</th>
<th>%Rv</th>
<th>f_HV</th>
<th>f_p</th>
<th>V = V/PHF x f_HV x f_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>3689</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>4000</td>
</tr>
<tr>
<td>Ramp</td>
<td>2199</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>2384</td>
</tr>
</tbody>
</table>

Estimation of \(V_{12} \)

\[
L_{EQ} = (\text{Equation 13-6 or 13-7})
\]

\[
P_{FM} = 0.591 \text{ using Equation (Exhibit 13-6)}
\]

\[
V_{12} = 2366 \text{ pc/h}
\]

\[
V_{3} \text{ or } V_{av34} = 1634 \text{ pc/h (Equation 13-14 or 13-17)}
\]

\[
\text{Is } V_{3} \text{ or } V_{av34} > 2,700 \text{ pc/h?} \quad \bigcirc \quad \text{Yes} \quad \bigcirc \quad \text{No}
\]

\[
\text{Is } V_{3} \text{ or } V_{av34} > 1.5 \times V_{12}/2 \quad \bigcirc \quad \text{Yes} \quad \bigcirc \quad \text{No}
\]

\[
\text{If Yes, } V_{12a} = \text{ pc/h (Equation 13-16, 13-18, or 13-19)}
\]

Capacity Checks

<table>
<thead>
<tr>
<th>Actual</th>
<th>Capacity</th>
<th>LOS F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>6384</td>
<td>Exhibit 13-8</td>
<td>No</td>
</tr>
</tbody>
</table>

Flow Entering Merge Influence Area

<table>
<thead>
<tr>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4750</td>
<td>Exhibit 13-8</td>
<td>4600:All</td>
</tr>
</tbody>
</table>

\[
D_{R} = 5.475 + 0.00734 V_{R} + 0.0078 V_{12} - 0.00627 L_{A}
\]

\[
D_{R} = 38.3 (\text{pc/mi/ln})
\]

\[
\text{LOS} = E (\text{Exhibit 13-2})
\]
Diverge Analysis

Analyst: AL
Agency/Co.: AIM ENGINEERING
Date performed: 3/8/2012
Analysis time period: PM
Freeway/Dir of Travel: I-75 SB
Junction: GGP SB OFF RAMP
Jurisdiction: 2039 EVERGLADES
Analysis Year:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Diverge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>3</td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0 mph</td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>6404 vph</td>
</tr>
</tbody>
</table>

Off Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>2</td>
</tr>
<tr>
<td>Free-Flow speed on ramp</td>
<td>45.0 mph</td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>1710 vph</td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>165 ft</td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>465 ft</td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

<table>
<thead>
<tr>
<th>Does adjacent ramp exist?</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume on adjacent ramp</td>
<td>vph</td>
</tr>
<tr>
<td>Position of adjacent ramp</td>
<td>ft</td>
</tr>
<tr>
<td>Type of adjacent ramp</td>
<td>ft</td>
</tr>
</tbody>
</table>

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>6404</td>
<td>1710</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>1685</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.00</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>0.00</td>
<td>mi</td>
<td>mi</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV = 0.971
Driver population factor, fP = 1.00
Flow rate, v_p = 6943 pcph

Estimation of V12 Diverge Areas

\[L = \quad \text{(Equation 13-12 or 13-13)} \]
\[EQ \]
\[P = 0.450 \quad \text{Using Equation 0} \]
\[PD \]
\[v = v + (v - v) P = 4144 \text{ pc/h} \]
\[12 \quad R \quad F \quad R \quad FD \]

Capacity Checks

\[v = v \quad \text{Actual} \quad 6943 \quad \text{Maximum} \quad 7200 \quad \text{LOS F?} \quad \text{No} \]
\[v = v - v \quad \text{FO} \quad F \quad R \quad 5089 \quad 7200 \quad \text{No} \]
\[v \quad \text{v} \quad \text{F} \quad R \quad 1854 \quad 4200 \quad \text{No} \]
\[v \quad \text{R} \quad 2799 \text{ pc/h} \quad \text{(Equation 13-14 or 13-17)} \]
\[3 \quad \text{av34} \quad \text{Is } v \quad \text{or } v \quad > 2700 \text{ pc/h?} \quad \text{Yes} \]
\[3 \quad \text{av34} \quad \text{Is } v \quad \text{or } v \quad > 1.5 \quad v /2 \quad \text{No} \]
\[3 \quad \text{av34} \quad 12 \quad \text{If yes, } v = 4243 \quad \text{(Equation 13-15, 13-16, 13-18, or 13-19)} \]
\[12A \]

Flow Entering Diverge Influence Area

<table>
<thead>
<tr>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4243</td>
<td>4400</td>
<td>No</td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

Density,
\[D = 4.252 + 0.0086 \quad v - 0.009 \quad L = 33.6 \quad \text{pc/mi/ln} \]
\[12 \quad R \quad D \]

Level of service for ramp-freeway junction areas of influence D

Speed Estimation

Intermediate speed variable,
\[D = 0.465 \quad S \]

Space mean speed in ramp influence area,
\[S = 57.0 \quad \text{mph} \]

Space mean speed in outer lanes,
\[S = 70.2 \quad \text{mph} \]

Space mean speed for all vehicles,
\[S = 61.5 \quad \text{mph} \]
RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information
- Analyst: AL
- Agency or Company: AIM ENGINEERING
- Date Performed: 3/16/2012
- Analysis Time Period: PM
- Jurisdiction: Golden Gate PKWY SB ON
- Analysis Year: 2039 Everglades

Site Information
- Freeway/Dir of Travel: I-75 SB

Project Description

Inputs
- Number of Lanes, N: 3
- Acceleration Lane Length, L_A: 550 ft
- Deceleration Lane Length L_D: ft
- Freeway Volume, V_F: 4694 veh/h
- Ramp Volume, V_R: 994 veh/h
- Ramp Free-Flow Speed, S_FF: 70.0 veh/h
- Ramp Free-Flow Speed, S_FR: 35.0 veh/h

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>(pc/h)</th>
<th>V (Veh/hr)</th>
<th>PHF</th>
<th>Terrain</th>
<th>%Truck</th>
<th>%Rv</th>
<th>f_Hv</th>
<th>f_p</th>
<th>v = V/PHF x f_Hv x f_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>4694</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>5089</td>
</tr>
<tr>
<td>Ramp</td>
<td>994</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>1078</td>
</tr>
</tbody>
</table>

Estimation of v_{12}

\[
V_{12} = V_F \left(P_{FM} \right)
\]

\[
L_{EQ} = \frac{V_{12}}{P_{FM}}
\]

Merge Areas

Capacity Checks

<table>
<thead>
<tr>
<th>Actual</th>
<th>Capacity</th>
<th>LOS F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FO}</td>
<td>6167</td>
<td>Exhibit 13-8</td>
</tr>
</tbody>
</table>

Flow Entering Merge Influence Area

<table>
<thead>
<tr>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{R12}</td>
<td>4095</td>
<td>Exhibit 13-8</td>
</tr>
</tbody>
</table>

Diverge Areas

Capacity Checks

<table>
<thead>
<tr>
<th>Actual</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FO} = V_F - V_R</td>
<td>Exhibit 13-8</td>
</tr>
<tr>
<td>V_R</td>
<td>Exhibit 13-10</td>
</tr>
</tbody>
</table>

Flow Entering Diverge Influence Area

<table>
<thead>
<tr>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{12}</td>
<td></td>
<td>Exhibit 13-8</td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

\[
D_R = 5.475 + 0.00734 V_R + 0.0078 V_{12} - 0.00027 L_A
\]

\[
D_R = 33.5 \text{ (pc/mi/ln)}
\]

\[
\text{LOS} = D \ (Exhibit 13-2)
\]
Diverge Analysis

Analyst: AL
Agency/Co.: AIM ENGINEERING
Date performed: 3/8/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 EB
Junction: SR 29 OFF RAMP
Jurisdiction:
Analysis Year: 2039 DESOTO
Description:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Diverge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>2</td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0 mph</td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>2111 vph</td>
</tr>
</tbody>
</table>

Off Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>1</td>
</tr>
<tr>
<td>Free-Flow speed on ramp</td>
<td>45.0 mph</td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>648 vph</td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>202 ft</td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>ft</td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

<table>
<thead>
<tr>
<th>Does adjacent ramp exist?</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume on adjacent ramp</td>
<td>vph</td>
</tr>
<tr>
<td>Position of adjacent ramp</td>
<td></td>
</tr>
<tr>
<td>Type of adjacent ramp</td>
<td></td>
</tr>
<tr>
<td>Distance to adjacent ramp</td>
<td>ft</td>
</tr>
</tbody>
</table>

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>2111</td>
<td>648</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td>v</td>
</tr>
<tr>
<td>Peak 15-min volume, vi5</td>
<td>556</td>
<td>171</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>22</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>0.00 mi</td>
<td>0.00 mi</td>
<td></td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV
Driver population factor, fP
Flow rate, vp

Estimation of V12 Diverge Areas

L = (Equation 25-8 or 25-9)
EQ
P = 1.000 Using Equation 0
FD
v = v + (v - v) P = 2543 pc/h
12 R F R FD

Capacity Checks

v = v
Fi F
v = v - v
FO F R
v
R
v 0 pc/h (Equation 25-15 or 25-16)
3 or av34
Is v v > 2700 pc/h?
3 or av34
Is v v > 1.5 v /2
3 or av34
12
If yes, v = (Equation 25-18)
12A

Flow Entering Diverge Influence Area

v
Actual Max Desirable Violation?
2543 4600 No
12

Level of Service Determination (if not F)

Density,
D = 4.252 + 0.0086 v - 0.009 L = 24.3 pc/mi/ln
R 12 D
Level of service for ramp-freeway junction areas of influence C

Speed Estimation

Intermediate speed variable,
D = 0.374
S
Space mean speed in ramp influence area,
S = 59.5 mph
R
Space mean speed in outer lanes,
S = N/A mph
0
Space mean speed for all vehicles,
S = 59.5 mph
HCS+: Ramps and Ramp Junctions Release 5.21

Phone:
E-mail:
Fax:

Merge Analysis

Analyst: AL
Agency/Co.: AIM ENGINEERING
Date performed: 3/16/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 EB
Junction: SR 29 EB ON
Jurisdiction: 2039 DESOTO
Analysis Year:
Description:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>2</td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0 mph</td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>1463 vph</td>
</tr>
</tbody>
</table>

On Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>1</td>
</tr>
<tr>
<td>Free-flow speed on ramp</td>
<td>35.0 mph</td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>202 vph</td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>560 ft</td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>ft</td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

Does adjacent ramp exist?	No
Volume on adjacent Ramp	vph
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	ft

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>1463</td>
<td>202</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>385</td>
<td>53</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>22</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>mi</td>
<td>mi</td>
<td>mi</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV = 0.971
Driver population factor, fP = 0.90
Flow rate, vp = 1762 pcph

Estimation of V12 Merge Areas

L = \text{(Equation 25-2 or 25-3)}

P = 1.000 \text{ Using Equation 0}

v = v \ (P \ F) = 1762 \ pc/h

Capacity Checks

\begin{align*}
\text{v} & \text{ Actual} & \text{Maximum} & \text{LOS F?} \\
\text{PO} & 2024 & 4800 & \text{No} \\
\text{v} & 0 \ \text{pc/h} & \text{(Equation 25-4 or 25-5)} \\
3 \ or \ av34 & \text{or av34} & \text{No} \\
\text{v} & > 2700 \ pc/h? & \text{No} \\
3 \ or \ av34 & \text{or av34} & \text{No} \\
12A & \text{If yes, v} & \text{(Equation 25-8)} \\
\end{align*}

Flow Entering Merge Influence Area

\begin{align*}
\text{v} & \text{ Actual} & \text{Max Desirable} & \text{Violation?} \\
12 & 1762 & 4400 & \text{No} \\
\end{align*}

Level of Service Determination (if not F)

\begin{align*}
\text{Density, D} & = 5.475 + 0.00734 \ v + 0.0078 \ v - 0.00627 \ L = 17.6 \ pc/mi/ln \\
R & \text{ for ramp-freeway junction areas of influence B} \\
\end{align*}

Speed Estimation

\begin{align*}
\text{Intermediate speed variable, M} & = 0.311 \\
\text{Space mean speed in ramp influence area, S} & = 61.3 \ mph \\
\text{Space mean speed in outer lanes, S} & = \text{N/A} \ mph \\
\text{Space mean speed for all vehicles, S} & = 61.3 \ mph \\
\end{align*}
HCS+: Ramps and Ramp Junctions Release 5.21

Phone:
E-mail:
Fax:

Diverge Analysis

Analyst: AL
Agency/Co.: AIM ENGINEERING
Date performed: 3/8/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 WB
Junction: SR 29 OFF RAMP
Jurisdiction: 2039 DESOTO
Analysis Year:

Description:

Freeway Data

Type of analysis: Diverge
Number of lanes in freeway: 2
Free-flow speed on freeway: 70.0 mph
Volume on freeway: 2119 vph

Off Ramp Data

Side of freeway: Right
Number of lanes in ramp: 1
Free-Flow speed on ramp: 45.0 mph
Volume on ramp: 259 vph
Length of first accel/decel lane: 215 ft
Length of second accel/decel lane:

Adjacent Ramp Data (if one exists)

Does adjacent ramp exist?: No
Volume on adjacent ramp: vph
Position of adjacent ramp:
Type of adjacent ramp:
Distance to adjacent ramp: ft

Conversion to pc/h Under Base Conditions

Junction Components

<table>
<thead>
<tr>
<th>Volume, V (vph)</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td>vph</td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>558</td>
<td>68</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>22</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.00</td>
<td>0.00</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>0.00</td>
<td>0.00</td>
<td>mi</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV 0.971 0.901
Driver population factor, fP 0.90 0.90
Flow rate, vp 2553 336 pcph

Estimation of V12 Diverge Areas

\[L = (\text{Equation 25-8 or 25-9}) \]
\[\text{EQ} \]
\[P = 1.000 \quad \text{Using Equation 0} \]
\[\text{FD} \]
\[v = v + (v - v) P = 2553 \quad \text{pc/h} \]
\[12 \quad \text{R} \quad \text{F} \quad \text{R} \quad \text{FD} \]

Capacity Checks

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Maximum</th>
<th>LOS F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>2553</td>
<td>4800</td>
<td>No</td>
</tr>
<tr>
<td>Pi</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>2217</td>
<td>4800</td>
<td>No</td>
</tr>
<tr>
<td>FO</td>
<td>F</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>336</td>
<td>2100</td>
<td>No</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>0</td>
<td>pc/h</td>
<td>(Equation 25-15 or 25-16)</td>
</tr>
<tr>
<td>3 or av34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is \(v \) \(v < 2700 \) pc/h? No

Is \(v \) \(v > 1.5 \frac{v}{2} \) ? No

If yes, \(v = \)

Flow Entering Diverge Influence Area

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>2553</td>
<td>4600</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

Density, \(D = 4.252 + 0.0086 v - 0.009 L = 24.3 \) pc/mi/ln
\[12 \quad \text{D} \]

Level of Service for ramp freeway junction areas of influence C

Speed Estimation

Intermediate speed variable, \(D = 0.328 \) S

Space mean speed in ramp influence area, \(S = 60.8 \) mph

Space mean speed in outer lanes, \(S = \text{N/A} \) mph

Space mean speed for all vehicles, \(S = 60.8 \) mph
HCS+: Ramps and Ramp Junctions Release 5.21

Phone:
Fax:
E-mail:

--- Merge Analysis ---

Analyst:
Agency/Co.: AIM ENGINEERING
Date performed: 3/16/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 WB
Junction: SR 29 WB ON
Jurisdiction: 2039 DESOTO
Analysis Year:
Description:

--- Freeway Data ---

Type of analysis: Merge
Number of lanes in freeway: 2
Free-flow speed on freeway: 70.0 mph
Volume on freeway: 1860 vph

--- On Ramp Data ---

Side of freeway: Right
Number of lanes in ramp: 1
Free-flow speed on ramp: 35.0 mph
Volume on ramp: 824 vph
Length of first accel/decel lane: 415 ft
Length of second accel/decel lane:

--- Adjacent Ramp Data (if one exists) ---

Does adjacent ramp exist? No
Volume on adjacent Ramp: vph
Position of adjacent Ramp:
Type of adjacent Ramp:
Distance to adjacent Ramp: ft

--- Conversion to pc/h Under Base Conditions ---

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>1860</td>
<td>824</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>489</td>
<td>217</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>22</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>mi</td>
<td>mi</td>
<td>mi</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV 0.971 0.901
Driver population factor, fP 0.90 0.90
Flow rate, vp 2241 1070 pcph

Estimation of V12 Merge Areas

\[L = \quad \text{(Equation 25-2 or 25-3)} \]
\[EQ \]
\[P = 1.000 \quad \text{Using Equation 0} \]
\[FM \]
\[v = v \quad \left(P \right) = 2241 \quad \text{pc/h} \]
\[12 \quad F \quad FM \]

Capacity Checks

\[
\begin{array}{ccc}
\text{Actual} & \text{Maximum} & \text{LOS F?} \\
\text{v} & 3311 & 4800 \\
\text{PO} & & \text{No} \\
\text{v} & 0 \quad \text{pc/h} \quad \text{(Equation 25-4 or 25-5)} & \\
\text{3 or av34} & & \\
\text{Is } \text{v} & \text{v} & > 2700 \quad \text{pc/h?} \\
\text{3 or av34} & & \text{No} \\
\text{Is } \text{v} & \text{v} & > 1.5 \text{v} / 2 \\
\text{3 or av34} & & 12 \\
\text{If yes, v} & = & \\
\text{12A} & & \\
\end{array}
\]

Flow Entering Merge Influence Area

\[
\begin{array}{ccc}
\text{Actual} & \text{Max Desirable} & \text{Violation?} \\
\text{v} & 2241 & 4400 \\
\text{12} & & \text{No} \\
\end{array}
\]

Level of Service Determination (if not F)

\[D = 5.475 + 0.00734 \text{v} + 0.0078 \text{v} - 0.00627 \frac{L}{R} = 28.2 \quad \text{pc/mi/ln} \]

Level of service for ramp-freeway junction areas of influence \(D \)

\[
\begin{array}{ccc}
\text{Speed Estimation} & \\
\text{Intermediate speed variable,} & M = 0.399 \\
\text{Space mean speed in ramp influence area,} & S = 58.8 \quad \text{mph} \\
\text{Space mean speed in outer lanes,} & S = \text{N/A} \quad \text{mph} \\
\text{Space mean speed for all vehicles,} & S = 58.8 \quad \text{mph} \\
\end{array}
\]
General Information
- **Agency or Company**: AIM ENGINEERING
- **Date Performed**: 3/6/2012
- **Project Description**: EVERGLADES I/R

Site Information
- **Highway/Direction of Travel**: I-75 EB
- **Jurisdiction**: CR 951/DESOTO BLVD
- **Analysis Year**: 2039 DESOTO

Flow Inputs
- **Volume, V**: 2918 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: veh/h
- **Driver type adjustment**: 1.00

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_T \) = 1.5
- \(E_R \) = 1.2
- \(f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)) \) = 0.971

Speed Inputs
- **Lane Width**: 12.0 ft
- **Rt-Shoulder Lat. Clearance**: 6.0 ft
- **Interchange Density**: 0.50 l/mi
- **Number of Lanes, N**: 3
- **FFS (measured)**: 75.0 mi/h

LOS and Performance Measures
- **Operational (LOS)**: \(v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p) \) pc/h/ln
- **S**: 75.0 mi/h
- **D**: \(v_p / S \) pc/mi/ln
- **LOS**: B

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **\(v_p \)**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Design (N)
- **Design LOS**: \(v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p) \) pc/h
- **S**: mi/h
- **D**: \(v_p / S \) pc/mi/ln
- **Required Number of Lanes, N**

Factor Location
- \(E_R \): Exhibits 23-8, 23-10
- \(f_{LV} \): Exhibit 23-4
- \(E_T \): Exhibits 23-8, 23-10, 23-11
- \(f_{LC} \): Exhibit 23-5
- \(f_p \): Page 23-12
- \(f_N \): Exhibit 23-6
- \(f_{ID} \): Exhibit 23-7

Copyright © 2005 University of Florida, All Rights Reserved

HCS® Version 6.21

Generated: 4/23/2012 8:19 PM

file://C:\Documents and Settings\groot\Local Settings\Temp\f2k197D.tmp

4/23/2012
Merge Analysis

Analyst: AL
Agency/Co.: AIM ENGINEERING
Date performed: 3/16/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 EB
Junction: DESOLO BLVD EB ON
Jurisdiction:
Analysis Year: 2039 DESEO
Description:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>2</td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0</td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>1952</td>
</tr>
</tbody>
</table>

On Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>1</td>
</tr>
<tr>
<td>Free-flow speed on ramp</td>
<td>35.0</td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>159</td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>1200</td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>ft</td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

<table>
<thead>
<tr>
<th>Does adjacent ramp exist?</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume on adjacent Ramp</td>
<td>vph</td>
</tr>
<tr>
<td>Position of adjacent Ramp</td>
<td></td>
</tr>
<tr>
<td>Type of adjacent Ramp</td>
<td></td>
</tr>
<tr>
<td>Distance to adjacent Ramp</td>
<td>ft</td>
</tr>
</tbody>
</table>

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>1952</td>
<td>159</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>514</td>
<td>42</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>6</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>mi</td>
<td>mi</td>
<td>mi</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, BR</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV 0.971 0.971
Driver population factor, fP 0.90 0.90
Flow rate, vp 2352 192 pcph

Estimation of V12 Merge Areas

\[L = \quad (\text{Equation 25-2 or 25-3}) \]

\[\text{EQ} \]

\[P = 1.000 \quad \text{Using Equation 0} \]

\[F \quad \text{FM} \]

\[v = \frac{v}{\left(\frac{P}{F} \quad \text{FM}\right)} = 2352 \quad \text{pc/h} \]

Capacity Checks

\[\frac{v}{\text{PO}} \]

\[\frac{v}{v} = 2544 \quad 4800 \quad \text{No} \]

\[\frac{v}{3 \quad \text{or} \quad \text{av34}} \]

\[0 \quad \text{pc/h} \quad (\text{Equation 25-4 or 25-5}) \]

Is \[\frac{v}{v} > 2700 \quad \text{pc/h}? \]

No

Is \[\frac{v}{3 \quad \text{or} \quad \text{av34}} \]

\[> \frac{1.5 \quad v}{12} \]

No

If yes, \[v = \frac{v}{12A} \]

Flow Entering Merge Influence Area

<table>
<thead>
<tr>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2352</td>
<td>4400</td>
<td>No</td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

Density, \[D = 5.475 + 0.00734 \quad v + 0.0078 \quad v - 0.00627 \quad L = 17.7 \quad \text{pc/mi/ln} \]

\[R \quad R \quad 12 \quad A \]

Level of service for ramp-freeway junction areas of influence B

Speed Estimation

Intermediate speed variable, \[M = 0.287 \]

Space mean speed in ramp influence area, \[S = 62.0 \quad \text{mph} \]

Space mean speed in outer lanes, \[S = \text{N/A} \quad \text{mph} \]

Space mean speed for all vehicles, \[S = 62.0 \quad \text{mph} \]
Diverge Analysis

Analyst: AL
Agency/Co.: AIM ENGINEERING
Date performed: 3/8/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 WB
Junction: DESOTO BLVD OFF RAMP
Jurisdiction: 2039 DESOTO
Analysis Year: Description:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Diverge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>2</td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0 mph</td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>2684 vph</td>
</tr>
</tbody>
</table>

Off Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>1</td>
</tr>
<tr>
<td>Free-Flow speed on ramp</td>
<td>45.0 mph</td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>202 vph</td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>400 ft</td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>ft</td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

<table>
<thead>
<tr>
<th>Does adjacent ramp exist?</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume on adjacent ramp</td>
<td>vph</td>
</tr>
<tr>
<td>Position of adjacent ramp</td>
<td></td>
</tr>
<tr>
<td>Type of adjacent ramp</td>
<td></td>
</tr>
<tr>
<td>Distance to adjacent ramp</td>
<td>ft</td>
</tr>
</tbody>
</table>

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>2684</td>
<td>202</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>706</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>6 %</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Terrain type: Grade</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>0.00</td>
<td>0.00</td>
<td>%</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV 0.971 0.971
Driver population factor, fP 0.90 0.90
Flow rate, vp 3233 243 pcph

Estimation of V12 Diverge Areas

\[L = \] (Equation 25-8 or 25-9)
EQ
\[P = 1.000 \] Using Equation 0
PD
\[v = v + (v - v) P = 3233 \text{ pc/h} \]
12 R F R FD

Capacity Checks

<table>
<thead>
<tr>
<th>v = v</th>
<th>Actual</th>
<th>Maximum</th>
<th>LOS F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fi F</td>
<td>3233</td>
<td>4800</td>
<td>No</td>
</tr>
<tr>
<td>v = v - v</td>
<td>2990</td>
<td>4800</td>
<td>No</td>
</tr>
<tr>
<td>FO F R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v R</td>
<td>243</td>
<td>2100</td>
<td>No</td>
</tr>
<tr>
<td>v 3 or av34</td>
<td>0 pc/h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is \[v > 2700 \text{ pc/h?} \] No

Is \[v > 1.5 v /2 \text{ on} \] No

If yes, \[v = \] (Equation 25-18)

Flow Entering Diverge Influence Area

<table>
<thead>
<tr>
<th>v</th>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3233</td>
<td>4600</td>
<td>No</td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

Density,
\[D = 4.252 + 0.0086 v - 0.009 L = 28.5 \text{ pc/mi/ln} \]
12 12 D

Level of service for ramp-freeway junction areas of influence D

Speed Estimation

Intermediate speed variable, \[D = 0.320 \text{ S} \]
Space mean speed in ramp influence area, \[S = 61.0 \text{ mph} \]
Space mean speed in outer lanes, \[S = \text{N/A} \text{ mph} \]
Space mean speed for all vehicles, \[S = 61.0 \text{ mph} \]
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>Application</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td>FFS, N, v_p</td>
<td>LOS, S, D</td>
</tr>
<tr>
<td>Design (N)</td>
<td>FFS, LOS, v_p</td>
<td>N, S, D</td>
</tr>
<tr>
<td>Design (v_p)</td>
<td>FFS, LOS, N</td>
<td>v_p, S, D</td>
</tr>
<tr>
<td>Planning (LOS)</td>
<td>FFS, N, AADT</td>
<td>LOS, S, D</td>
</tr>
<tr>
<td>Planning (N)</td>
<td>FFS, LOS, AADT</td>
<td>N, S, D</td>
</tr>
<tr>
<td>Planning (v_p)</td>
<td>FFS, LOS, AADT</td>
<td>v_p, S, D</td>
</tr>
</tbody>
</table>

General Information

Analyst: GSR
Agency or Company: AIM ENGINEERING
Date Performed: 3/26/2012
Analysis Time Period: AM
Project Description: EVERGLADES IJR

Flow Inputs

Volume, V: 2482 veh/h
AADT: veh/day
Peak-Hr Prop. of AADT, K: %
Peak-Hr Direction Prop, D: veh/h
Driver type adjustment: 1.00

Calculate Flow Adjustments

f_p = 1.00
E_T = 1.5

Speed Inputs

Lane Width: 12.0 ft
Rt-Shoulder Lat. Clearance: 6.0 ft
Interchange Density: 0.50 l/mi
Number of Lanes, N: 2
Base free-flow Speed, BFFS: 75.0 mi/h

LOS and Performance Measures

Operational (LOS)

v_p = (V or DDHV) / (PHF x N x f_HV x f_p) 1346 pc/h/ln
S = 74.8 mi/h
D = v_p / S 18.0 pc/mi/ln
LOS = B

Site Information

Highway/Direction of Travel: I-75
From/To: BTWN WB DESOTO BLVD RAMP
Jurisdiction: 2039 DESOTO
Analysis Year: 2039

Flow and Design Measures

Design (N)

Design LOS

v_p = (V or DDHV) / (PHF x N x f_HV x f_p) pc/h
S = mi/h
D = v_p / S pc/mi/ln

Required Number of Lanes, N

Glossary

N - Number of lanes
V - Hourly volume
v_p - Flow rate
LOS - Level of service
DDHV - Directional design hour volume

Factor Location

E_R - Exhibits 23-9, 23-10, 23-11
f_LW - Exhibit 23-4
f_LC - Exhibit 23-5
f_ID - Exhibit 23-6
f_ID - Exhibit 23-7
General Information
- **Analyst**: AL
- **Agency or Company**: AIM ENGINEERING
- **Date Performed**: 3/8/2012
- **Analysis Time Period**: AM
- **Project Description**: EVERGLADES IJR

Site Information
- **Highway/Direction of Travel**: I-75 WB
- **From/To**: DESOTO BLVD/CR 951
- **Jurisdiction**: Analysis Year 2039 DESOTO

Flow Inputs
- **Volume, V**: 3711 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, p_T = 6
- **Peak-Hr Direction Prop, D**: %RVs, p_R = 0
- **DDHV = AADT x K x D**: veh/h
- **Driver type adjustment**: 1.00

Calculate Flow Adjustments
- $f_p = 1.00$
- $E_T = 1.5$
- $E_{HV} = \frac{1}{1 + \frac{p_T}{E_T} \cdot (E_T - 1)} + \frac{p_R}{E_R} (E_R - 1) = 0.971$

Speed Inputs
- **Lane Width**: 12.0 ft
- **Rt-Shoulder Lat. Clearance**: 6.0 ft
- **Interchange Density**: 0.50 l/mi
- **Number of Lanes, N**: 3
- **FFS (measured)**: mi/h
- **Base free-flow Speed, BFFS**: 75.0 mi/h

LOS and Performance Measures

Operational (LOS)
- $v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV} \times f_p)$ pc/h/ln
- $s = 74.8$ mi/h
- $D = \frac{v_p}{s}$ pc/mi/ln
- **LOS**

Design (N)
- **Design LOS**
- **Design LOS**
- **Required Number of Lanes, N**

Glossary
- **N - Number of lanes**
- **S - Speed**
- **V - Hourly volume**
- **D - Density**
- **f_p - Flow rate**
- **FFS - Free-flow speed**
- **LOS - Level of service**
- **BFFS - Base free-flow speed**
- **DDHV - Directional design hour volume**
Diverge Analysis

- Analyst: GSR
- Agency/Co.: AIM ENGINEERING
- Date performed: 3/25/2012
- Analysis time period: AM
- Freeway/Dir of Travel: I-75 EB
- Junction: SR 951 OFF RAMP
- Jurisdiction: 2039 DESOTO
- Description:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Diverge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>3</td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0 mph</td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>4423 vph</td>
</tr>
</tbody>
</table>

Off Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>2</td>
</tr>
<tr>
<td>Free-Flow speed on ramp</td>
<td>45.0 mph</td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>2254 vph</td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>1000 ft</td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>0 ft</td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

- Does adjacent ramp exist? No
- Volume on adjacent ramp vph
- Position of adjacent ramp
- Type of adjacent ramp
- Distance to adjacent ramp ft

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>4423</td>
<td>2254</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>1164</td>
<td>593</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>6</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.00 %</td>
<td>0.00 %</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>0.00 mi</td>
<td>0.00 mi</td>
<td></td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Estimation of V12 Diverge Areas

\[L = \text{EQ} \]
\[P = 0.450 \text{ Using Equation 0} \]
\[v = v + (v - v) P = 3502 \text{ pc/h} \]
\[12 \quad R \quad F \quad R \quad FD \]

Capacity Checks

\[
\begin{array}{ccc}
\text{v} & \text{Actual} & \text{Max} & \text{LOS F?} \\
\text{Fi} & 4795 & 7200 & \text{No} \\
\text{v} = v - v & 2351 & 7200 & \text{No} \\
\text{FO} & 2444 & 4100 & \text{No} \\
\text{R} & \text{v} & 1293 \text{ pc/h} & \text{(Equation 25-15 or 25-16)} \\
3 \text{ or av34} & & & \\
\text{Is v} & \text{v} & > 2700 \text{ pc/h?} & \text{No} \\
3 \text{ or av34} & & & \\
\text{Is v} & \text{v} & > 1.5 \text{ v/2} & \text{No} \\
3 \text{ or av34} & & 12 & \\
\text{If yes, v} & & & \text{(Equation 25-18)} \\
& 12A & & \\
\end{array}
\]

Flow Entering Diverge Influence Area

\[
\begin{array}{ccc}
\text{v} & \text{Actual} & \text{Max Desirable} & \text{Violation?} \\
12 & 3502 & 4600 & \text{No} \\
\end{array}
\]

\[D = 4.252 + 0.0086 v - 0.009 L = 16.4 \text{ pc/mi/ln} \]

Level of Service Determination (if not F)

Density,

\[R \]

Level of service for ramp-freeway junction areas of influence B

Speed Estimation

\[
\begin{array}{ccc}
\text{Intermediate speed variable,} & D = 0.518 \\
S & \text{mph} \\
\text{Space mean speed in ramp influence area,} & S = 55.5 \\
R & \text{mph} \\
\text{Space mean speed in outer lanes,} & S = 75.6 \\
0 & \text{mph} \\
\text{Space mean speed for all vehicles,} & S = 59.8 \\
\end{array}
\]
Phone:
Fax:
E-mail:

--- Merge Analysis ---

Analyst: GSR
Agency/Co.: AIM ENGINEERING
Date performed: 3/25/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 EB
Junction: SR 951 EB ON
Jurisdiction:
Analysis Year: 2039 DESOTO
Description:

--- Freeway Data ---

Type of analysis: Merge
Number of lanes in freeway: 3
Free-flow speed on freeway: 70.0 mph
Volume on freeway: 2169 vph

--- On Ramp Data ---

Side of freeway: Right
Number of lanes in ramp: 1
Free-flow speed on ramp: 35.0 mph
Volume on ramp: 749 vph
Length of first accel/decel lane: 465 ft
Length of second accel/decel lane: ft

--- Adjacent Ramp Data (if one exists) ---

Does adjacent ramp exist? No
Volume on adjacent Ramp: vph
Position of adjacent Ramp:
Type of adjacent Ramp:
Distance to adjacent Ramp: ft

--- Conversion to pc/h Under Base Conditions ---

Junction Components

<table>
<thead>
<tr>
<th>Volume, V (vph)</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2169</td>
<td>749</td>
<td></td>
<td>vph</td>
</tr>
<tr>
<td>/Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>571</td>
<td>197</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>6</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>mi</td>
<td>mi</td>
<td>mi</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV 0.971 0.971
Driver population factor, fP 1.00 1.00
Flow rate, vp 2352 812 pcph

{Estimation of V12 Merge Areas}

\[L = \text{EQ} \]
\[P = 0.591 \text{ Using Equation 1} \]
\[v = v_{(P)} = \frac{1389 \text{ pc/h}}{12 \text{ F FM}} \]

{Capacity Checks}

<table>
<thead>
<tr>
<th>Actual</th>
<th>Maximum</th>
<th>LOS F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>3164</td>
<td>7200</td>
</tr>
<tr>
<td>FO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>963 pc/h</td>
<td>(Equation 25-4 or 25-5)</td>
</tr>
<tr>
<td>3 or av34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is v</td>
<td>v > 2700 pc/h?</td>
<td>No</td>
</tr>
<tr>
<td>3 or av34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is v</td>
<td>v > 1.5 v /2</td>
<td>No</td>
</tr>
<tr>
<td>3 or av34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If yes, v =</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>12A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

{Flow Entering Merge Influence Area}

<table>
<thead>
<tr>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>1389</td>
<td>4400</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

{Level of Service Determination (if not F)}

Density, \(D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 19.4 \text{ pc/mi/ln} \)
\(R \text{ R 12 A} \)

{Level of service for ramp-freeway junction areas of influence B}

{Speed Estimation}

Intermediate speed variable, \(M = 0.324 \)
\(S \)

Space mean speed in ramp influence area, \(S = 60.9 \text{ mph} \)
\(R \)

Space mean speed in outer lanes, \(S = 68.3 \text{ mph} \)
\(0 \)

Space mean speed for all vehicles, \(S = 63.0 \text{ mph} \)
HCS+: Ramps and Ramp Junctions Release 5.21

Phone: Fax:
E-mail:

Diverge Analysis

Analyst: GSR
Agency/Co.: AIM ENGINEERING
Date performed: 3/25/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 WB
Junction: SR 951 OFF RAMP
Jurisdiction:
Analysis Year: 2039 DESOTO
Description:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Diverge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0 mph</td>
<td></td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>3711 vph</td>
<td></td>
</tr>
</tbody>
</table>

Off Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Free-Flow speed on ramp</td>
<td>45.0 mph</td>
<td></td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>953 vph</td>
<td></td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>220 ft</td>
<td></td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>ft</td>
<td></td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

<table>
<thead>
<tr>
<th>Does adjacent ramp exist?</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume on adjacent ramp</td>
<td>vph</td>
</tr>
<tr>
<td>Position of adjacent ramp</td>
<td></td>
</tr>
<tr>
<td>Type of adjacent ramp</td>
<td></td>
</tr>
<tr>
<td>Distance to adjacent ramp</td>
<td>ft</td>
</tr>
</tbody>
</table>

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>3711</td>
<td>953</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>977</td>
<td>251</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.00</td>
<td>0.00</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>0.00 mi</td>
<td>0.00 mi</td>
<td>%</td>
</tr>
<tr>
<td>Trucks and buses PCE, BT</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Estimation of V12 Diverge Areas

\[L = \text{EQ} \]
\[P = 0.612 \text{ Using Equation 5} \]
\[v = v + (v - v) P = 2863 \text{ pc/h} \]
\[12 \text{ R F R FD} \]

Capacity Checks

\[v = v \]
\[\text{Actual} \quad 4024 \quad \text{Maximum} \quad 7200 \quad \text{LOS F?} \quad \text{No} \]
\[v = v - v \]
\[\text{FO F R} \quad 2991 \quad 7200 \quad \text{No} \]
\[v \]
\[\text{R} \quad 1033 \quad 2100 \quad \text{No} \]
\[v = 1161 \text{ pc/h} \quad \text{(Equation 25-15 or 25-16)} \]
\[3 \text{ or av34} \]

Is \[v > 2700 \text{ pc/h?} \quad \text{No} \]

Is \[v > 1.5 \frac{v}{2} \]
\[3 \text{ or av34} \quad \text{No} \]

If yes, \[v = \]
\[12A \]

Flow Entering Diverge Influence Area

\[v \]
\[2863 \quad \text{Max Desirable} \quad 4600 \quad \text{Violation?} \quad \text{No} \]
\[12 \]

Level of Service Determination (if not F)

\[D = 4.252 + 0.0086 v - 0.009 L = 26.9 \text{ pc/mi/ln} \]
\[R \quad 12 \quad D \]

Level of service for ramp-freeway junction areas of influence C

Speed Estimation

Intermediate speed variable, \[D = 0.391 \]
\[S \]
Space mean speed in ramp influence area, \[S = 59.1 \text{ mph} \]
\[R \]
Space mean speed in outer lanes, \[S = 76.2 \text{ mph} \]
\[0 \]
Space mean speed for all vehicles, \[S = 63.1 \text{ mph} \]
Merge Analysis

Analyst: GSR
Agency/Co.: AIM ENGINEERING
Date performed: 3/25/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 WB
Junction: SR 951 WB ON
Jurisdiction:
Analysis Year: 2039 DESOTO
Description:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>3</td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0 mph</td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>2758 vph</td>
</tr>
</tbody>
</table>

On Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>2</td>
</tr>
<tr>
<td>Free-flow speed on ramp</td>
<td>35.0 mph</td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>2869 vph</td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>1000 ft</td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>500 ft</td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

<table>
<thead>
<tr>
<th>Does adjacent ramp exist?</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume on adjacent Ramp</td>
<td>vph</td>
</tr>
<tr>
<td>Position of adjacent Ramp</td>
<td></td>
</tr>
<tr>
<td>Type of adjacent Ramp</td>
<td></td>
</tr>
<tr>
<td>Distance to adjacent Ramp</td>
<td>ft</td>
</tr>
</tbody>
</table>

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>2758</td>
<td>2869</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>726</td>
<td>755</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>6</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type: Grade</td>
<td>Level</td>
<td>Level</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV
Driver population factor, fP
Flow rate, vp

<table>
<thead>
<tr>
<th></th>
<th>0.971</th>
<th>0.971</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>2990</td>
<td>3111</td>
</tr>
</tbody>
</table>

Estimation of V12 Merge Areas

\[
L = \text{EQ} \\
P = 0.555 \quad \text{Using Equation 0} \\
v = v \left(\frac{P}{FM}\right) = 1659 \quad \text{pc/h} \\
12 \quad F \quad \text{FM}
\]

Capacity Checks

\[
\begin{align*}
v & = 6101 \quad \text{pc/h} \\
\text{FO} & \quad v = 1331 \quad \text{pc/h} \\
3 \quad \text{or av34} & \\
\text{Is} \quad v & > 2700 \quad \text{pc/h?} \quad \text{No} \\
3 \quad \text{or av34} & \\
\text{Is} \quad v & > 1.5 \frac{v}{2} \quad \text{Yes} \\
3 \quad \text{or av34} & \\
\text{If yes, } v & = 1708 \quad \text{(Equation 25-8)} \\
12A & \\
\end{align*}
\]

Flow Entering Merge Influence Area

\[
\begin{align*}
v & = 1708 \quad \text{pc/h} \\
12A & \\
\end{align*}
\]

Level of Service Determination (if not F)

\[
D = 5.475 + 0.00734 \quad v + 0.0078 \quad v - 0.00627 \quad L = 26.0 \quad \text{pc/mi/ln} \\
R \quad R \quad 12 \quad A \\
\text{Level of service for ramp-freeway junction areas of influence} \quad C
\]

Speed Estimation

\[
\begin{align*}
\text{Intermediate speed variable,} & \quad M = 0.629 \\
\text{Space mean speed in ramp influence area,} & \quad S = 52.4 \quad \text{mph} \\
\text{Space mean speed in outer lanes,} & \quad S = 67.2 \quad \text{mph} \\
\text{Space mean speed for all vehicles,} & \quad S = 54.9 \quad \text{mph}
\end{align*}
\]
RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information

Analyst: AL
Agency or Company: AIM ENGINEERING
Date Performed: 3/8/2012
Analysis Time Period: AM

Site Information

Freeway/Dir of Travel: I-75 NB
Junction: GGP NB OFF RAMP
Jurisdiction: Analysis Year: 2039 DESOTO

Inputs

- Upstream Adj Ramp: Yes
- Acceleration Lane Length, L_A: 310 ft
- Freeway Volume, V_F: 5627 veh/h
- Ramp Volume, V_R: 916 veh/h
- Freeway Free-Flow Speed, S_FF: 70.0 veh/h
- Ramp Free-Flow Speed, S_FR: 45.0 veh/h

- Downstream Adj Ramp: Yes
- Deceleration Lane Length L_D: ft
- Freeway Volume, V_F: 5627 veh/h
- Ramp Volume, V_R: 916 veh/h
- Freeway Free-Flow Speed, S_FF: 70.0 veh/h
- Ramp Free-Flow Speed, S_FR: 45.0 veh/h

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>(pc/h)</th>
<th>V (Veh/hr)</th>
<th>PHF</th>
<th>Terrain</th>
<th>%Truck</th>
<th>%Rv</th>
<th>f_HV</th>
<th>f_p</th>
<th>v = V/PHF x f_HV x f_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>5627</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>6101</td>
</tr>
<tr>
<td>Ramp</td>
<td>916</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>993</td>
</tr>
</tbody>
</table>

Estimation of v_12

- V_{12} = V_F (P_{FM})
- L_{EQ} = (Equation 13-6 or 13-7)
- P_{FM} = using Equation (Exhibit 13-6)
- V_{12} = pc/h
- V_{3 or V_{av34}} = pc/h (Equation 13-14 or 13-17)

Capacity Checks

<table>
<thead>
<tr>
<th>Actual</th>
<th>Capacity</th>
<th>LOS F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FO}</td>
<td>Exhibit 13-8</td>
<td></td>
</tr>
<tr>
<td>V_{R12}</td>
<td>Exhibit 13-8</td>
<td></td>
</tr>
</tbody>
</table>

Flow Entering Merge Influence Area

<table>
<thead>
<tr>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{R12}</td>
<td>Exhibit 13-8</td>
<td></td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

- D_r = 5.475 + 0.00734 V_{12} + 0.0078 V_{12} - 0.00627 L_A
- D_r = (pc/mln)
- LOS = (Exhibit 13-2)

Level of Service Determination (if not F)

- D_r = 4.252 + 0.0086 V_{12} - 0.009 L_D
- D_r = (pc/mln)
- LOS = D (Exhibit 13-2)
<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>AL</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>AIM ENGINEERING</td>
</tr>
<tr>
<td>Date Performed</td>
<td>3/16/2012</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>GOLDEN GATE PKWY NB ON</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2039 DESOTO</td>
</tr>
</tbody>
</table>

Inputs

- **Upstream Adj Ramp**
 - Number of Lanes, N: 3
 - Acceleration Lane Length, L_A: 500 ft
 - Deceleration Lane Length, L_D: ft
 - Freeway Volume, V_F: 4711 veh/h
 - Ramp Volume, V_R: 1725 veh/h
 - Ramp Free-Flow Speed, S_FF: 70.0 veh/h
 - Ramp Free-Flow Speed, S_FR: 35.0 veh/h

- **Downstream Adj Ramp**
 - Number of Lanes, N: 3
 - Acceleration Lane Length, L_A: 500 ft
 - Deceleration Lane Length, L_D: ft
 - Freeway Volume, V_F: 4711 veh/h
 - Ramp Volume, V_R: 1725 veh/h
 - Ramp Free-Flow Speed, S_FF: 70.0 veh/h
 - Ramp Free-Flow Speed, S_FR: 35.0 veh/h

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>(pc/h)</th>
<th>V</th>
<th>PHF</th>
<th>Terrain</th>
<th>%Truck</th>
<th>%Rv</th>
<th>f_HV</th>
<th>f_p</th>
<th>V = V/PHF x f_HV x f_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>4711</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>5108</td>
</tr>
<tr>
<td>Ramp</td>
<td>1725</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>1870</td>
</tr>
<tr>
<td>UpStream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DownStream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Merge Areas

Diverge Areas

Estimation of v_{12}

\[
V_{12} = V_F \left(P_{FM} \right)
\]

Capacity Checks

<table>
<thead>
<tr>
<th>V_{FO}</th>
<th>Actual</th>
<th>Capacity</th>
<th>LOS F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>6978</td>
<td>Exhibit 13-8</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Flow Entering Merge Influence Area

<table>
<thead>
<tr>
<th>V_{R12}</th>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4891</td>
<td>Exhibit 13-8</td>
<td>4600:All</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

\[
D_R = 5.475 + 0.00734 V_R + 0.0078 V_{12} - 0.00027 L_A
\]

\[
D = 39.6 \text{ (pc/mi/ln)}
\]

Flow Entering Diverge Influence Area

<table>
<thead>
<tr>
<th>V_{12}</th>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exhibit 13-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

\[
D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D
\]

\[
D = (\text{pc/mi/ln})
\]
HCS+: Ramps and Ramp Junctions Release 5.21

Phone:
E-mail:
Fax:

Diverge Analysis

Analyst: AL
Agency/Co.: AIM ENGINEERING
Date performed: 3/8/2012
Analysis time period: AM
Freeway/Dir of Travel: I-75 SB
Junction: GGP SB OFF RAMP
Jurisdiction:
Analysis Year: 2039 DESOTO
Description:

Freeway Data

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Diverge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in freeway</td>
<td>3</td>
</tr>
<tr>
<td>Free-flow speed on freeway</td>
<td>70.0 mph</td>
</tr>
<tr>
<td>Volume on freeway</td>
<td>5935 vph</td>
</tr>
</tbody>
</table>

Off Ramp Data

<table>
<thead>
<tr>
<th>Side of freeway</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes in ramp</td>
<td>2</td>
</tr>
<tr>
<td>Free-Flow speed on ramp</td>
<td>45.0 mph</td>
</tr>
<tr>
<td>Volume on ramp</td>
<td>2232 vph</td>
</tr>
<tr>
<td>Length of first accel/decel lane</td>
<td>165 ft</td>
</tr>
<tr>
<td>Length of second accel/decel lane</td>
<td>465 ft</td>
</tr>
</tbody>
</table>

Adjacent Ramp Data (if one exists)

Does adjacent ramp exist?	No
Volume on adjacent ramp	vph
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	ft

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Junction Components</th>
<th>Freeway</th>
<th>Ramp</th>
<th>Adjacent Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (vph)</td>
<td>5935</td>
<td>2232</td>
<td>vph</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Peak 15-min volume, v15</td>
<td>1562</td>
<td>587</td>
<td>v</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>6</td>
<td>6</td>
<td>%</td>
</tr>
<tr>
<td>Recreational vehicles</td>
<td>0</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Terrain type:</td>
<td>Level</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.00</td>
<td>%</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Length</td>
<td>0.00</td>
<td>mi</td>
<td>0.00 mi</td>
</tr>
<tr>
<td>Trucks and buses PCE, ET</td>
<td>1.5*</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Recreational vehicle PCE, ER</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Heavy vehicle adjustment, fHV 0.971 0.971
Driver population factor, fP 1.00 1.00
Flow rate, vp 6435 2420 pcph

--- Estimation of V12 Diverge Areas ---

\[L = \] (Equation 25-8 or 25-9)

\[EQ \]
\[P = 0.450 \text{ Using Equation 0} \]
\[FD \]
\[v = v + (v - v) P = 4227 \text{ pc/h} \]
\[12 R F R FD \]

--- Capacity Checks ---

\[v = v \]
\[6435 \]
\[Fi F \]
\[v = v - v \]
\[4015 \]
\[FO F R \]
\[v \]
\[2420 \]
\[R \]
\[v \]
\[2208 \text{ pc/h} \] (Equation 25-15 or 25-16)
\[3 \text{ or av34} \]
\[Is v \]
\[v > 2700 \text{ pc/h?} \]
\[3 \text{ or av34} \]
\[Is v \]
\[v > 1.5 v /2 \]
\[3 \text{ or av34} \]
\[12 \]

If yes, \[v = \]
\[12A \]

--- Flow Entering Diverge Influence Area ---

\[v = 4227 \]
\[12 \]

Max Desirable
\[4600 \]

Violation?
\[\text{No} \]

--- Level of Service Determination (if not F) ---

\[D = 4.252 + 0.0086 v - 0.009 L = 33.4 \text{ pc/mi/ln} \]
\[12 R D \]

Density, \[D \]

Level of service for ramp-freeway junction areas of influence \[D \]

--- Speed Estimation ---

Intermediate speed variable, \[S = 0.516 \]

Space mean speed in ramp influence area, \[S = 55.6 \text{ mph} \]

Space mean speed in outer lanes, \[S = 72.1 \text{ mph} \]

Space mean speed for all vehicles, \[S = 60.3 \text{ mph} \]
RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information
- **Analyst**: AL
- **Agency or Company**: AIM ENGINEERING
- **Date Performed**: 3/16/2012
- **Analysis Time Period**: AM
- **Jurisdiction**: GOLDS/GATE PKWY SB ON
- **Analysis Year**: 2039 DESOTO

Site Information
- **Freeway/Dif of Travel**: I-75 SB
- **Junction**: GOLDEN GATE PKWY SB ON

Inputs
- **Upstream Adj Ramp**
 - Number of Lanes, N: 3
 - Acceleration Lane Length, \(L_A \): 550 ft
 - Deceleration Lane Length, \(L_D \): ft
 - Freeway Volume, \(V_F \): 3703 veh/h
 - Ramp Volume, \(V_R \): 720 veh/h
 - Freeway Free-Flow Speed, \(S_{FF} \): 70.0 veh/h
 - Ramp Free-Flow Speed, \(S_{FR} \): 35.0 veh/h
 - Downstream Adj Ramp
 - Freeway Volume, \(V_D \): 4015 veh/h

Conversion to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>(pc/h)</th>
<th>V (Veh/hr)</th>
<th>PHF</th>
<th>Terrain</th>
<th>%Truck</th>
<th>%Rv</th>
<th>f_{HV}</th>
<th>f_p</th>
<th>(v = V/PHF \times f_{HV} \times f_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>3703</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>4015</td>
</tr>
<tr>
<td>Ramp</td>
<td>720</td>
<td>0.95</td>
<td>Level</td>
<td>6</td>
<td>0</td>
<td>0.971</td>
<td>1.00</td>
<td>781</td>
</tr>
</tbody>
</table>

Estimation of \(v_{12} \)

\[
V_{12} = V_F \left(P_{PM} \right) \\
L_{EQ} = \frac{V_{12}}{0.593} \text{ using Equation (Exercise 13-6)} \\
V_{12} = 2380 \text{ pc/h} \\
V_3 = \text{pc/h (Exercise 13-14 or 13-17)} \\
V_3 \text{ or } V_{av34} > 2700 \text{pc/h?} \quad \text{Yes} \quad \text{No} \\
V_3 \text{ or } V_{av34} > 1.5 \times V_{12}/2 \quad \text{Yes} \quad \text{No} \\
\text{If } V_{12a} = \text{pc/h (Exercise 13-16, 13-18, or 13-19)}
\]

Estimation of \(v_{12} \)

\[
V_{12} = V_R + (V_F - V_R)P_{FD} \\
V_{12} = \text{pc/h} \\
V_3 \text{ or } V_{av34} > 2700 \text{pc/h?} \quad \text{Yes} \quad \text{No} \\
V_3 \text{ or } V_{av34} > 1.5 \times V_{12}/2 \quad \text{Yes} \quad \text{No} \\
\text{If Yes}, V_{12a} = \text{pc/h (Exercise 13-16, 13-18, or 13-19)}
\]

Capacity Checks

<table>
<thead>
<tr>
<th>Capacity Checks</th>
<th>Actual</th>
<th>Capacity</th>
<th>LOS F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{FO})</td>
<td>4796</td>
<td>Exhibit 13-8</td>
<td>No</td>
</tr>
</tbody>
</table>

Flow Entering Merge Influence Area

<table>
<thead>
<tr>
<th>(V_{R12})</th>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>3161</td>
<td>Exhibit 13-8</td>
<td>4600:All</td>
<td>No</td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

\[
D_R = 26.3 \text{ (pc/mi/ln)} \\
D_R = 5.475 + 0.00734 V_R + 0.0078 V_{12} - 0.00627 L_A \\
V_{12} = \frac{D_R}{5.475 + 0.00734 V_R + 0.0078 V_{12} - 0.00627 L_A} \\
L_A = 26.3 \text{ (pc/mi/ln)}
\]

Flow Entering Diverge Influence Area

<table>
<thead>
<tr>
<th>(V_{12})</th>
<th>Actual</th>
<th>Max Desirable</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{12a})</td>
<td>Exhibit 13-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level of Service Determination (if not F)

\[
D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D \\
D_R = \text{(pc/mi/ln)}
\]

\[
\text{LOS} = \text{C (Exercise 13-2)}
\]